Face Detection Using Improved Faster RCNN
نویسندگان
چکیده
Faster RCNN has achieved great success for generic object detection including PASCAL object detection and MS COCO object detection. In this report, we propose a detailed designed Faster RCNN method named FDNet1.0 for face detection. Several techniques were employed including multi-scale training, multi-scale testing, light-designed RCNN, some tricks for inference and a vote-based ensemble method. Our method achieves two 1th places and one 2nd place in three tasks over WIDER FACE validation dataset (easy set, medium set, hard set).
منابع مشابه
Face Detection using Deep Learning: An Improved Faster RCNN Approach
In this report, we present a new face detection scheme using deep learning and achieve the state-of-the-art detection performance on the well-known FDDB face detetion benchmark evaluation. In particular, we improve the state-of-the-art faster RCNN framework by combining a number of strategies, including feature concatenation, hard negative mining, multi-scale training, model pretraining, and pr...
متن کاملBuried object detection from B-scan ground penetrating radar data using Faster-RCNN
In this paper, we adapt the Faster-RCNN framework for the detection of underground buried objects (i.e. hyperbola reflections) in B-scan ground penetrating radar (GPR) images. Due to the lack of real data for training, we propose to incorporate more simulated radargrams generated from different configurations using the gprMax toolbox. Our designed CNN is first pre-trained on the grayscale Cifar...
متن کاملEnhancement of SSD by concatenating feature maps for object detection
We propose an object detection method that improves the accuracy of the conventional SSD (Single Shot Multibox Detector), which is one of the top object detection algorithms in both aspects of accuracy and speed. The performance of a deep network is known to be improved as the number of feature maps increases. However, it is difficult to improve the performance by simply raising the number of f...
متن کاملCMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face Detection
Robust face detection in the wild is one of the ultimate components to support various facial related problems, i.e. unconstrained face recognition, facial periocular recognition, facial landmarking and pose estimation, facial expression recognition, 3D facial model construction, etc. Although the face detection problem has been intensely studied for decades with various commercial applications...
متن کاملFace-MagNet: Magnifying Feature Maps to Detect Small Faces
In this paper, we introduce the Face Magnifier Network (Face-MageNet), a face detector based on the Faster-RCNN framework which enables the flow of discriminative information of small scale faces to the classifier without any skip or residual connections. To achieve this, Face-MagNet deploys a set of ConvTranspose, also known as deconvolution, layers in the Region Proposal Network (RPN) and ano...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.02142 شماره
صفحات -
تاریخ انتشار 2018